1. Oxalic acid, $\text{H}_2\text{C}_2\text{O}_4$ is a weak diprotic acid with $K_{a1} = 5.9 \times 10^{-2}$ and $K_{a2} = 6.4 \times 10^{-5}$ at 25°C.

a) Write these two acid dissociation reactions for oxalic acid.

\[
\begin{align*}
\text{H}_2\text{C}_2\text{O}_4(\text{aq}) + \text{H}_2\text{O}(\ell) & \rightleftharpoons \text{H}_2\text{C}_2\text{O}_4^- (\text{aq}) + \text{H}_3\text{O}^+ (\text{aq}) \\
\text{acid} & \quad \text{base} & \quad \text{conj base} & \quad \text{conj acid} \\
\text{HC}_2\text{O}_4^- (\text{aq}) + \text{H}_2\text{O}(\ell) & \rightleftharpoons \text{C}_2\text{O}_4^{2-} (\text{aq}) + \text{H}_3\text{O}^+ (\text{aq}) \\
\text{acid} & \quad \text{base} & \quad \text{conj base} & \quad \text{conj acid}
\end{align*}
\]

b) Which is the stronger acid, $\text{H}_2\text{C}_2\text{O}_4$ or HC_2O_4? $K_{a1} > K_{a2}$.

c) Determine K_b for HC_2O_4:

\[
K_w = K_a K_b
\]

\[
10^{-\text{pH}} = (6.4 \times 10^{-5}) K_b
\]

\[
K_b = 1.7 \times 10^{-13}
\]

2. If water is heated and placed under pressure is has a pH of 6.6. Find the K_w of the water under these conditions. Determine whether it is acidic, basic, or neutral.

\[
K_w = [\text{H}^+][\text{OH}^-]
\]

In pure water, $[\text{H}^+] = [\text{OH}^-]$

Therefore the solution is \text{neutral}.

\[
K_w = [\text{H}^+]^2 = (10^{-6.6})^2 = 6.3 \times 10^{-14}
\]

3. Consider the two weak acids HX (molar mass = 180 g/mol) and HY (molar mass = 78 g/mol). If a solution of 16.9 g/L of HX has the same pH as one containing 9.05 g/L of HY, which is the stronger acid?

\[
\begin{align*}
\text{HX:} & \quad \frac{16.9 \text{ g}}{180 \text{ g}} \text{ mol} \text{ L}^{-1} = 0.094 \text{ mol L}^{-1} \\
\text{HY:} & \quad \frac{9.05 \text{ g}}{78 \text{ g}} \text{ mol L}^{-1} = 0.116 \text{ mol L}^{-1}
\end{align*}
\]

$[\text{HX}] < [\text{HY}]$

$[\text{HX}]$ is the stronger acid, it takes less HX to produce more H^+ ions.
4. Find the pH of the mixture of 0.100M in CH₃COOH ($K_a = 1.8 \times 10^{-5}$) and 0.050M in HCN ($K_a = 4.9 \times 10^{-10}$). $K_a,\text{CH}_3\text{COOH} \gg K_a,\text{HCN}$, use CH₃COOH only.

$$\text{CH}_3\text{C}_2\text{O}_2\text{H} + \text{H}_2\text{O}(l) \rightleftharpoons \text{CH}_3\text{C}_2\text{O}_2^- + \text{H}_3\text{O}^+$$

Initial:
- I C E
- .1 O 0
- -x +x +x
- .1-x x x

% ionization = $\frac{[\text{CH}_3\text{C}_2\text{O}_2^-]_{eq}}{[\text{CH}_3\text{C}_2\text{O}_2\text{H}]} \times 100\% = 1.34\%$

$1.34 \times 10^{-3} = \frac{x^2}{1-x}$, weak acid approx

pH = $-\log[\text{H}_3\text{O}^+]_{eq} = 2.87$

5. Determine if each salt will form a solution that is acidic, basic, or pH-neutral.

a) (NH₄)₂SO₄: acidic
b) Na₃PO₄: basic
c) KCl: neutral
d) RbI: neutral
e) Al(NO₃)₃: acidic
f) K₂CO₃: basic
g) BaCl₂: neutral

6. Calculate the pH of a solution that is 0.00115M in HCl and 0.0100M in HClO₂ ($K_a = 1.1 \times 10^{-2}$).

$$\text{HClO}_2(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{H}_3\text{O}^+(aq) + \text{ClO}_2^-(aq)$$

Initial:
- I C E
- .01 0 0
- -x +x +x
- .01-x 0 0

$K_a = 1.1 \times 10^{-2} = \frac{(0.0115+x)(x)}{(0.01-x)}$, weak acid approx

$1x^2 + 1.1 \times 10^{-2}x - 1.1 \times 10^{-4} = 0$

$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$x = \frac{[6.34 \times 10^{-3}] \text{ or } -0.174}{2}$
7. We are dealing with a diprotic acid, which means 2 moles of H⁺ ions will react with 1 mole of ion.

\[
\text{Moles KOH} = \frac{11.1 \text{ mL} \times 1.00 \text{ mmol/L}}{\text{L}} \times \frac{1}{1000 \text{ mL}}
\]
\[
= 1.11 \times 10^{-4} \text{ moles}
\]

\[
\text{Moles of acid} = \frac{1.11 \times 10^{-4} \text{ moles}}{2}
\]
\[
= 5.55 \times 10^{-5} \text{ moles}
\]

\[
\text{H}_2\text{A} \rightarrow 2\text{H}^+ + \text{A}^{2-}
\]

Each mole of diprotic acid releases 2 moles of H⁺.

Neutalizing an acid or a base is to add enough OH⁻ or H⁺ ions that the molar quantities are equal.

To find the # of moles of acid in 250mL, just multiply by 10 (25mL x 10 = 250mL).

\[
\text{Moles of acid in 250mL} = 5.55 \times 10^{-3} \times 10 = 5.55 \times 10^{-2} \text{ moles}
\]

\[
\text{Molar mass Acid} = \frac{5.009}{5.55 \times 10^{-2} \text{ moles}} = 90.1 \text{ g/mol}
\]

8. Equivalence point is where the moles of H⁺ are equal to base.

Finding moles of NaOH:

\[
\text{Moles NaOH} = [\text{NaOH}] \times \text{Volume Titrated}
\]
\[
= 0.0633 \text{ M} \times (18.4 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}})
\]
\[
= 1.16 \times 10^{-3} \text{ moles}
\]

Since the acid is monoprotic, there is a 1:1 ratio; meaning the moles of acid should be the same as the equivalence point.

\[
\text{Moles of HA} = 1.16 \times 10^{-3} \text{ moles NaOH} \frac{1 \text{ mole HA}}{1 \text{ mole NaOH}} = 1.16 \times 10^{-3} \text{ moles}
\]
Since we used 0.1276g of acid,
\[
\text{molar mass } HA = \frac{0.1276g}{1.16 \times 10^{-3}\text{moles}} = 110.2 \text{ mol}^{-1}
\]

b. We can find the moles of NaOH added by multiplying the concentration by the volume.
\[
\text{moles } NaOH = (0.0633M) \times (100\text{mL} \cdot \frac{1\text{L}}{1000\text{mL}}) = 6.33 \times 10^{-4}\text{ moles } NaOH
\]
NaOH will dissociate equimolarly into Na⁺ and OH⁻. Some OH⁻ will react with the H⁺ in solution.

\[
\text{HA} + \text{OH}^- \rightleftharpoons \text{H}_2\text{O} + \text{A}^- \\
\]
\[
\begin{align*}
\text{I:} & \quad 116 \times 10^{-3}\text{mol} & 6.33 \times 10^{-4}\text{mol} & 0 \\
\text{C:} & \quad -6.33 \times 10^{-4} & -6.33 \times 10^{-4} & +6.33 \times 10^{-4} \\
\text{E:} & \quad 5.27 \times 10^{-4} & 0 & 6.33 \times 10^{-4}
\end{align*}
\]

\[
K_A = \frac{[\text{H}^+][\text{A}^-]_{eq}}{[\text{HA}]_{eq}} = \frac{(1.35 \times 10^{-4}\text{m})(0.018\text{m})}{(0.015\text{m})}
\]
\[
K_A = 1.61 \times 10^{-6}
\]

9. \(\text{CH}_3\text{NH}_3\text{Cl}\) will dissociate into \(\text{CH}_3\text{NH}_3^+\) and \(\text{Cl}^-\). Initially, it will further dissociate into \(\text{CH}_3\text{NH}_2\) and \(\text{H}^+\).

\[
K_w = K_a K_b
\]
\[
K_A = \frac{10^{-14}}{4.4 \times 10^{-4}} = 2.27 \times 10^{-11}
\]
Set up ICE Chart:

\[
\begin{align*}
\text{CH}_3\text{NH}_3^+ & \rightleftharpoons \text{H}^+ & + & \text{CH}_3\text{NH}_2 \\
\text{I:} & \quad 0.35\text{m} & 0 & 0 \\
\text{C:} & \quad -x & +x & +x \\
\text{E:} & \quad 0.35 - x & x & x
\end{align*}
\]
\[K_A = \frac{[H^+][H_2NH_2]}{[H_2NH_3^+]} = \frac{x^2}{0.35 - x} = 2.27 \times 10^{-11} \]

\(K_A \) value is very small, assume weak acid approximation.

\[\frac{x^2}{0.35} = 2.27 \times 10^{-11} \]

\[x = 2.82 \times 10^{-6} \text{ M} = [H^+] \]

\[pH = -\log([H^+]) = -\log(2.82 \times 10^{-6}) \]

\[pH = 5.55 \]

\[\frac{[H_2NH_2]}{[H_2NH_3^+]} = 2.82 \times 10^{-6} \text{ M} \]

10a. Invalid. *\(K_{sp} \) is an equilibrium value that depends on the products of solubility in a solvent.*

In \(AgNO_3 \):

\[H_2O(l) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq) \]

\[K_{sp} = [Ag^{+}] [Cl^{-}] = 5.5 = s^2 = (2.5 \times 10^{-3})^2 \]
\[K_{sp} = 6.25 \times 10^{-15} \text{M} \]

b. Invalid. \(K_{sp} \) is different for each solvent. In the case for \(AgNO_3 \), we should expect \(K_{sp} \) to be lower due to its contribution of \(Ag \) solubility and different intermolecular forces.

c. Invalid. Due to the common ion effect, \(AgCl \) solubility is severely hindered.

d. Valid. \(K_{sp} \) value is low, therefore \(AgCl \) will tend to precipitate.

e. Invalid. Same reason as part c. Common ion effect is present in \(AgNO_3 \), thus lowering solubility.

IIa. In pure water:

\[PbBr_2(s) \rightarrow Pb^{2+}(aq) + 2Br^- \]

\[K_{sp} = [Pb^{2+}][Br^-]^2 \]

Set \(S = [Pb^{2+}] \)

and since \([Br^-] = 2[Pb^{2+}] \), \([Br^-] = 2S \)

\[K_{sp} = S(2S)^2 = 4S^3 = 8.9 \times 10^{-6} \]

\[S = 1.7 \times 10^{-2} \text{M} \]

b. In 0.20 M KBr solution:

Same thing as part a., but KBr contributes to 0.20 M of \(Br^- \). We must add this to the final \([Br^-] \).

\[[Br^-] = 0.20 + 2S \]

\[K_{sp} = 5(0.20 + 2S)^2 = 8.9 \times 10^{-6} \]

We can assume 0.20 M >> 2S since \(K_{sp} \) is small.

\[8.9 \times 10^{-6} = 5(0.20)^2 \]

\[S = 2.2 \times 10^{-4} \text{M} \]

c. Same method as above:

\[[Pb^{2+}] = 0.2 + 5 \text{ due to contribution of } Pb(NO_3)_2 \]

\[K_{sp} = 8.9 \times 10^{-6} = (0.2 + 5)(2S)^2 \]
Assume $0.2 > S$:

$$8.9 \times 10^{-6} = 0.2(2s)^2$$

$$S = 3.3 \times 10^{-2} \text{M}$$

12. We use the Henderson-Hasselbalch equation for buffer.

$$pOH = pK_b + \log \left(\frac{\text{base}}{\text{conjugate acid}} \right)$$

K_b of $NH_3 = 1.8 \times 10^{-5}$

$$pOH = -\log(1.8 \times 10^{-5}) + \log \left(\frac{0.10}{0.10} \right)$$

$pOH = 4.74$

$PH = 14 - 4.74 = 9.26$

Now if we add HCl, some of the H^+ ions will react with NH_3 to form NH_4^+.

Before adding HCl:

moles $NH_3 = 0.1\, M \times (0.125\, L) = 0.0125\, \text{moles}$